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Patterns in Pascal’s Triangle

Project Statement

(1) How many odd numbers are in the 100th row of Pascals triangle?
(2) How many entries in the 100th row of Pascals triangle are di-

visible by 3? By 5?

When you divide a number by 3, the remainder is either 0, 1, or 2.
Divide the entries in Pascals triangle by 3 and color them accordingly.
You get a beautiful visual pattern. Can you explain it? Can you
generate the pattern on a computer?

What about the patterns you get when you divide by other numbers?

Prerequisites

Warm Up Problems

Note!
We do not include results for these warm up problems on the Making
Mathematics Web site. If you need assistance, please write to us at
our project mailbox.

Hints

the 12242448 pattern
the geometric approach

Resources

Teaching Notes

Introducing the Project.

Working on the Project.

Closure.

Results

There are at least two approaches to this project: an arithmetic and
a geometric approach. Each approach informs the other, so, while we
present them separately, you’ll see many interdependencies.
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An Arithmetic Approach. There are eight odd numbers in the
100th row of Pascal’s triangle, 89 numbers that are divisible by 3,
and 96 numbers that are divisible by 5.

Of course, one way to get these answers is to write out the 100th
row, of Pascal’s triangle, divide by 2, 3, or 5, and count (this is the
basic idea behind the geometric approach).

But let’s see if we can find a more efficient (and elegant) way to get
our answers. In an attempt to show how one might actually come up
with interesting results, what follows is a collage of various arithmetic
approaches that we’ve seen over the years in our work with students
and teachers.

We want to count the number of elements in a row of Pascal’s triangle
that are (or are not) divisible by some integer. Divisibility by a prime
is easier to deal with, so let’s look at that case. The question, then, is

Given a non-negative integer n and a prime p, which

numbers
(
n
k

)
are divisible by p?

Well, sometimes a more pointed question is easier to answer:

Given a non-negative integer n and a prime p, what is

the highest power of p that divides
(
n
k

)
?

This “highest power of p” function is useful in many contexts, and it’s
sometimes denoted by ordp, so, for example:

ord5(40) = 1 (20 = 51 · 23)

ord2(40) = 3

ord7(40) = 0

ord7(5
8 · 34 · 5 · 72 · 115) = 2

To get ordp(n), factor n into primes and look at the power of p that
shows up. That’s ordp(n). You can check that ordp has the property
that, for non-negative integers m and n,

ordp(mn) = ordp(m) + ordp(n)

And, if n is a factor of m,

ordp

(
m

n

)
= ordp(m)− ordp(n)

So, our question becomes

Given a non-negative integer n and a prime p, what’s an

easy way to calculate ordp
((

n
k

))
?
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In particular, we want to know when

ordp

((
n

k

))
> 0

because this is when p is a factor of
(
n
k

)
. Of course, what we really

want to do is to count all the entries in the nth row of Pascal that have
ordp > 0, but let’s worry about that later.

Well, there’s an explicit formula for
(
n
k

)
in terms of factorials:

(
n

k

)
=

n!

k! · (n− k)!

So, using the properties of ord (the ord of a quotient is the difference
of the ords, and the ord of a product is the sum of the ords), we have

ordp

((
n

k

))
= ordp

(
n!

k! · (n− k)!

)

= ordp(n!)− ordp(k!)− ordp ((n− k)!)

It seems like a next step might be to find a way to find the ord of a fac-
torial. A numerical example points the way: let’s calculate ord3(139!).

So, we want to find the highest power of 3 that divides

1 · 2 · 3 · 4 · . . . · 137 · 138 · 139

Each multiple of 3 give us at least one “contribution”:

3, 6, 9, 12, 15, . . .

This stops at the last multiple of 3 before 139 (that is, at 138), and
there are about 139

3
numbers in the list. In fact, there are exactly

⌊
139

3

⌋
= 46

where
⌊

139
3

⌋
means the “integer part” of 461

3
(that is, the integer part

of 139
3

).
Of course, we’ve missed some “extra” multiples of 3: every multiple

of 9 (that is, 9, 18, 27 . . . ) counts twice, and there are

⌊
139

9

⌋
= 15
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of these. But, we’ve now missed the extra multiples of 3 that come
from multiples of 27, and there are⌊

139

27

⌋
= 5

of these. You get the idea. Next, we need to count the multiples of 81
(to get the extra factor that comes from 34), and there are⌊

139

81

⌋
= 1

of these (namely, 81 itself). If we didn’t know any better, we could
count the multiples of 243 that are less than 139, and there’d be⌊

139

243

⌋
= 0

of these. And everything would be 0 from here on. So, the power of 3
that divides 139! is

ord3(139!) = 46 + 15 + 5 + 1 = 67

remember where this came from. Summarizing our calculations, we
could say:

ord3(139!) =
⌊
139

3

⌋
+

⌊
139

32

⌋
+

⌊
139

33

⌋
+

⌊
139

34

⌋
+

⌊
139

35

⌋
+

⌊
139

36

⌋
+

⌊
139

37

⌋
+. . .

Of course, after awhile (in fact, after 34), all these “floors” are 0. So,
we have a method for finding ordp(n!):

Proposition 1. If n is a non-negative integer and p is a prime, then

ordp(n!) =
⌊
n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+

⌊
n

p4

⌋
+

⌊
n

p5

⌋
+

⌊
n

p6

⌋
+

⌊
n

p7

⌋
+ . . .

This unsatisfying in many ways. For one, it doesn’t tell you when
the terms of the sum drop off to zero. For that, you’d have to write
n in base p. But wait—if you write n in base p, the whole sum in the
proposition gets easier. Here’s how:

Let’s go back to our example if 139 and 3. First, let’s write 139 as a
base-3 expansion:

139 = (1 · 1) + (1 · 3) + (0 · 32) + (2 · 33) + (1 · 34)

So,

1393 = 12011
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Then, to get ord3(139!), using we use the proposition and calculate
as follows:⌊

139

3

⌋
=

⌊
(1 · 1

3
) + (1 · 1) + (0 · 3) + (2 · 32) + (1 · 33)

⌋
= (1 · 1) + (0 · 3) + (2 · 32) + (1 · 33)⌊

139

32

⌋
=

⌊
(1 · 1

32
) + (1 · 1

3
) + (0 · 1) + (2 · 3) + (1 · 32)

⌋
= (0 · 1) + (2 · 3) + (1 · 32)⌊

139

33

⌋
=

⌊
(1 · 1

33
) + (1 · 1

32
) + (0 · 1

3
) + (2 · 1) + (1 · 3)

⌋
= (2 · 1) + (1 · 3)⌊

139

34

⌋
=

⌊
(1 · 1

34
) + (1 · 1

33
) + (0 · 1

32
) + (2 · 1

3
) + (1 · 1)

⌋
= (1 · 1)

And everything is 0 after this. Wow, look at this. Look at the rightmost
equations. One thing we could do is to read down instead of across;
that would allow us to add “like” powers of 3. And, just like when you
read across, when you read down you see the base-3 digits of 139, first
all except the “units” 1, then all except the 11, then all but the 011,
and finally all but the 2011. Will this always happen? Let’s see.

Suppose
n = n0 + n1p+ n2p

2 + · · ·+ nsp
s

Then⌊
n

p

⌋
=

⌊
(n0 ·

1

p
) + (n1 · 1) + (n2 · p) + (n3 · p2) + · · ·+ (ns · ps−1)

⌋

= (n1 · 1) + (n2 · p) + (n3 · p2) + · · ·+ (ns · ps−1)

and⌊
n

p2

⌋
=

⌊
(n0 ·

1

p2
) + (n1 ·

1

p
) + (n2 · 1) + (n3 · p) + · · ·+ (ns · ps−2)

⌋

= (n2 · 1) + (n3 · p) + · · ·+ (ns · ps−2)

And, more generally,⌊
n

pk

⌋
=

⌊
(n0 ·

1

pk
) + (n1 ·

1

pk−1
) + (n2 ·

1

pk−2
) + (n3 ·

1

pk−3
) + · · ·+ (ns · ps−k)

⌋

= (nk · 1) + (nk+1 · p) + · · ·+ (ns · ps−k)

But

ordp(n!) =
⌊
n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+

⌊
n

p4

⌋
+

⌊
n

p5

⌋
+

⌊
n

p6

⌋
+

⌊
n

p7

⌋
+ . . .
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So let’s write this all out and see if we can use the “add down” trick:

⌊
n

p

⌋
= (n1 · 1) + (n2 · p) + (n3 · p2) + (n4 · p3) + · · ·+ (ns · ps−1)

⌊
n

p2

⌋
= (n2 · 1) + (n3 · p) + (n4 · p2) + (n5 · p3) · · ·+ (ns · ps−2)

⌊
n

p3

⌋
= (n3 · 1) + (n4 · p) + (n5 · p2) + · · ·+ (ns · ps−3)

...
...⌊

n

ps

⌋
= (ns · 1)

If we add down, we get the “clipped” sum of the base-p digits of n.
Let’s invent a notation for this: Let σp(n) be the sum of the base-p
digits of n. Then adding down, we have

ordp(n!) = (σp(n)− n0) · 1 + (σp(n)− n0 − n1) · p+ (σp(n)− n0 − n1 − n2) · p2 +

(σp(n)− n0 − n1 − n2 − n3) · p3 + · · ·+ (σp(n)− n0 − n1 − n2 − · · · − ns−1) · ps−1 +

(σp(n)− n0 − n1 − n2 − · · · − ns) · ps

The last line is 0, but we put it in to keep the pattern going. Time
for some algebraic fooling around. Gather the σp(n)s, the n0s, the n1s,
and so on:

ordp(n!) = σp(n)
(
1 + p+ p2 + · · ·+ ps−1

)
− n0

(
1 + p+ p2 + · · ·+ ps−1

)
− n1

(
p+ p2 + · · ·+ ps−1

)
− n2

(
p2 + · · ·+ ps−1

)
...

− ns (ps)
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Each sum is a geometric series, just begging to be summed:

ordp(n!) = σp(n)

(
ps − 1

p− 1

)

− n0

(
ps − 1

p− 1

)

− n1

(
ps − p
p− 1

)

− n2

(
ps − p2

p− 1

)

...

− ns
(
ps − ps
p− 1

)

Factor out the denominator of p− 1 and rearrange what’s left:

ordp(n!) =
1

p− 1
(psσp(n)− ps(n0 + n1 + · · ·+ ns)

−σp(n) + n0 + n1p+ n2p
2 + · · ·+ nsp

s
)

Oh, how nice: since

n0 + n1 + · · ·+ ns = σp(n) and

n0 + n1p+ n2p
2 + · · ·+ nsp

s = n

this simplifies to

n− σp(n)

p− 1

Let’s state it as a result:

Proposition 2. If n is a non-negative integer and p is a prime,

ordp(n!) =
n− σp(n)

p− 1

where σp(n) is the sum of the digits in the base-p expansion of n.
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We’re in a better position now to evaluate ordp
((

n
k

))
. In fact,

ordp

((
n

k

))
= ordp

(
n!

k! · (n− k)!

)

= ordp(n!)− ordp(k!)− ordp ((n− k)!)

=
n− σp(n)− (k − σp(k))− ((n− k)− σp(n− k))

p− 1

=
σp(k) + σp(n− k)− σp(n)

p− 1

This is pretty interesting. Let’s state it as a result:

Proposition 3. If n is a non-negative integer and p is a prime,

ordp

((
n

k

))
=
σp(k) + σp(n− k)− σp(n)

p− 1

where σp(n) is the sum of the digits in the base-p expansion of n.

Notice that what we really care about is which
(
n
k

)
have non-zero

ords. But it turns out that one can get the exact value of the expression
in proposition 3 with very little extra work (we know this because we
worked it out before we wrote up these results). The fact that

ordp

((
n

k

))
=
σp(k) + σp(n− k)− σp(n)

p− 1

is one of those strange results that contains a surprise: We know that

ordp
((

n
k

))
is a non-negative integer, so p− 1 must be a factor of

σp(k) + σp(n − k) − σp(n)—that’s not at all obvious. And shouldn’t
the digit sum of n equal the digit sum of k plus the digit sum of n−k?
After all, k and n− k add up to n, so shouldn’t the sum of the digits
work the same way? Let’s see what happens with an example:

Let’s look at ord3

((
139
32

))
:
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Well, according to the proposition, we need to look at the digit sum
(base 3) of 139, 32, and 139− 32 = 107. We have

139 = (1 · 1) + (1 · 3) + (0 · 32) + (2 · 33) + (1 · 34)

32 = (2 · 1) + (1 · 3) + (0 · 32) + (1 · 33) + (0 · 34)

107 = (2 · 1) + (2 · 3) + (2 · 32) + (0 · 33) + (1 · 34)

So,

1393 = 12011

323 = 01012

1073 = 10222

So,

σ3(139) = 5

σ3(32) = 4

σ3(107) = 7

and proposition 3 says that

ord3

((
139

32

))
=

7 + 4− 5

3− 1
=

6

2
= 3

And sure enough,(
139

32

)
= 29794458700044250140618567735660

= 22 · 33 · 51 · 112 · 171 · 191 · 231 · 371 · 411 · 431 · 591 · 611 · 671 · 1091 ·
1131 · 1271 · 1311 · 1371 · 1391

So, why is σ3(32)+σ3(107)−σ3(139) not 0? If we look at the traditional
way we add base-3 numbers (or numbers in any base), we see where
the discrepancy shows up. Here’s how you’d add 32 to 107 to get 139
in base 3:

1 1 1

0 1 0 1 2
+ 1 0 2 2 2

1 2 0 1 1
So, what disturbs the digit sums are the “carries;” that’s why

σ3(32) + σ3(107) �= σ3(139)

Notice that each carry gets multiplied by 3 when it jumps into the next
column. For example, looking at the rightmost column, the 2+2 is 11,
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so the carried 1 is really 1 ·3 (or 10 in base 3). Let’s look at the general
situation:

Suppose we are looking at
(
n
k

)
. We write n, k, and n− k in base p:

n = n0 + n1p+ n2p
2 + · · ·+ nsp

s

k = k0 + k1p+ k2p
2 + · · ·+ ksp

s

n− k = m0 +m1p+m2p
2 + · · ·+msp

s

And suppose the carries are denoted by δi:

δs−1 . . . δ1 δ0

ms . . . m2 m1 m0

+ ks . . . k2 n1 k0

ns . . . n2 n1 n0

Well, by the way this algorithm works,

m0 + k0 = n0 + pδ0

m1 + k1 + δ0 = n1 + pδ1

m2 + k2 + δ1 = n2 + pδ2
...

...

ms + ks + δs−1 = ns

Then

m0 + k0 − n0 = pδ0

m1 + k1 − n1 = pδ1 − δ0
m2 + k2 − δ0 = pδ2 − δ1

...
...

ms + ks − ns = −δs−1

Add down:

(m0 +m1 +m2 + · · ·+ms) + (k0 +m1 + k2 + · · ·+ ks)− (n0 + n1 + n2 + · · ·+ ns) =

(p− 1)(δ0 + δ1 + δ2 + · · ·+ δs)

or

σp(n− k) + σp(k)− σp(n) = (p− 1)(δ0 + δ1 + δ2 + · · ·+ δs)

There’s the factor of p − 1. Dividing by it, and combining the result
with the result of proposition 3, we have “Kummer’s carry theorem:”
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Theorem 1. If n is a non-negative integer and p is a prime,

ordp

((
n

k

))

is the number of carries you get when k and n− k are added in base p.

Let’s go back to the original question:

Given a non-negative integer n and a prime p, for how

many k is ordp
((

n
k

))
> 0 ?

In light of theorem 1 this is the same question as:

Given a non-negative integer n and a prime p, for how
many k is there a carry when k and n − k are added in
base p?

Instead of answering this, we found it easier to figure out when there’s
not a carry. And from here, we can subtract (from n + 1) to get the
desired answer.

An example will help. Suppose p = 5 and, n = 133866, so, in base
5, n is

13240431

How can two numbers add to this with no carries? Reading from right
to left, there are two choices for the first digit—0 and 1. If k “ends”
in 0, n− k ends in 1 and vice-versa. For the “fives” place, there are 4
choices for k—it could have a 0, 1, 2, or 3 in the 5’s place (and n − k
would have, respectively, a 3, 2, 1, or 0 in the same place). And so it
goes. Here’s a summary of what can happen:

place digit in n number of choices for digits for k
1 1 2—namely, {0,1}
5 3 4—namely, {0,1,2,3}
52 4 5—namely, {0,1,2,3,4}
53 0 1—namely, {0}
54 4 5— namely, {0,1,2,3,4}
55 2 3—namely, {0,1,2}
56 3 4—namely, {0,1,2,3 }
57 1 2—namely, {0,1}
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In general, we have the answer to our question:

Theorem 2. The number of entries in the nth row of Pascal’s triangle
that are not divisible by a prime p can be determined as follows:

• Write n in base p:

n = n0 + n1p+ n2p
2 + · · ·+ nsp

s

• The number in question is

s∏
k=0

(1 + nk) = (1 + n0)(1 + n1)(1 + n2) . . . (1 + ns)

So, for example, suppose p = 2. Then, looking at 100 in base 2:

100 = (1 · 26) + (1 · 25) + (0 · 24) + (0 · 23) + (1 · 22) + (0 · 21) + (0 · 20)

so

1002 = 1100100

Add 1 to each digit and multiply the answers together:

(1 + 1)(1 + 1)(0 + 1)(0 + 1)(1 + 1)(0 + 1)(0 + 1) = 8

and 8 numbers in the 100th row are not divisible by 2 (that is, are
odd). Try it for 3:

100 = (1 · 34) + (0 · 33) + (2 · 32) + (0 · 31) + (1 · 30)

so

1003 = 10201

and the number of entries in the 100th row that are not divisible by 3
is

(1 + 1)(0 + 1)(2 + 1)(0 + 1)(1 + 1) = 12

But there are 101 entries in the 100th row, so
101− 12 = 89 are divisible by 3.

Theorem 1 is due to Ernst Kummer (1810–1893), a mathematician
who laid the groundwork for some of the mathematics that led to the
proof of Fermat’s Last theorem. Indeed, knowing the power of a prime
that divides any particular entry of Pascal’s triangle turns out to be
an essential tool in that proof, and more generally, in all of number
theory, so this project connects to some frontline mathematics.

A Geometric Approach. We’ll look at the pictures, like on
http://www.cs.washington.edu/homes/jbaer/classes/blaise/bigblaise.html

And, i have a paper written by kids from 15 years ago.
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Extensions

The p-adic approach developed (without these words) by last sum-
mer’s kids.


